

**Method Comparison and Interlaboratory Study Report
for the ISO 16140-2:2016 validation of Compact Dry
“Nissui”LM (CD LM) for the enumeration of *Listeria
monocytogenes* in a broad range of foods and
environmental samples**

MicroVal study number: 2020LR91(Quantitative)

Method/Kit name: Compact Dry CDLM

Report version:MCS ILS summary report

MicroVal Expert Laboratory: Campden BRI
Suzanne Jordan
Station Road,
Chipping Campden,
Gloucs,
GL55 6LD, UK
Tel: 0044 1386 842000
Email: suzanne.jordan@campdenbri.co.uk
www.campdenbri.co.uk

Foreword

This report is prepared in accordance with ISO 16140-2:2016 and MicroVal technical committee interpretation of ISO 16140-2 v.1.0

Company: Nissui Pharmaceutical Co Ltd.

Expert Laboratory: Campden BRI
Station Road
Chipping Campden
Gloucs,
GL55 6LD, UK

Method/Kit name: Nissui Compact Dry *Listeria* (CDLM)

Validation standard: Microbiology of the food chain— Method validation
Part 1: Vocabulary (ISO 16140-1:2016) and

Part 2: Protocol for the validation of alternative (proprietary) methods against a reference method (ISO 16140-2:2016)

Reference method: ISO 11290-2:2017 Microbiology of the food chain — Horizontal method for the detection and enumeration of *Listeria monocytogenes* and of *Listeria* spp. Part 2: Enumeration method

Scope of validation: Broad range of foods covering

- Meat and poultry products (RTE/RTRH)
- Dairy products (raw and heat treated)
- Fresh produce and fruit
- Seafood & Fishery products
- Multicomponent foods
- Environmental samples

Certification organisation: Lloyd's Register

List of abbreviations

- AL	Acceptability Limit
- AP	Accuracy Profile
- Art. Cont.	Artificial contamination
- CFU	Colony Forming Units
- CL	confidence limit (usually 95%)
- EL	Expert Laboratory
- \bar{D}	Average difference
- g	Gram
- h	Hour
- ILS	Interlaboratory Study
- Inc/Ex	Inclusivity and Exclusivity
- LOQ	Level of Quantification
- MCS	Method Comparison Study
- min	minute
- ml	Millilitre
- MR	(MicroVal) Method Reviewer
- MVTC	MicroVal Technical Committee
- EL	Expert Laboratory
- n	number of samples
- na	not applicable
- neg	negative (target not detected)
- NG	no growth
- nt	not tested
- RT	Relative Trueness
- SD	standard deviation of differences
- 10^{-1} dilution	10-fold dilution of original food
- 10^{-2} dilution	100-fold dilution of original food

Contents

1	Introduction	5
2	Method protocols	6
2.1	Reference method	6
2.2	Alternative method	6
2.3	Study design	6
3	Method comparison study	7
3.1	Relative trueness study	7
3.1.1	Number of samples	7
3.1.2	Test sample preparation	8
3.1.3	Protocols applied during the validation study	9
3.1.4	Test results	9
3.1.5	Calculation and interpretation of relative trueness study	9
3.1.6	Conclusion (RT study)	15
3.2	Accuracy profile study	15
3.2.1	Categories, sample types and strains	15
3.2.2	Calculations and interpretation of accuracy profile study	16
3.3	Inclusivity / exclusivity	19
3.3.1	Protocols	19
3.3.2	Results	19
3.3.3	Conclusion	19
3.4	Conclusion (MCS)	21
4	Interlaboratory study	21
4.1	Study organisation	21
4.1.1	Collaborators	21
4.1.2	Matrix and strain used	21
4.1.3	Sample preparation	21
4.1.4	Labelling and shipping	22
4.1.5	Analysis of Samples	22
4.2	Experimental parameters controls	23
4.2.1	Detection of <i>Listeria monocytogenes</i> in the matrix before inoculation	23
4.2.2	Strain stability during transport	23
4.2.3	Logistic conditions	23
4.3	Calculation and summary of data	24
4.3.1	MicroVal Expert laboratory results	24
4.3.2	Results obtained by the collaborative laboratories	25
5	Overall conclusions of the validation study	28
ANNEX A:	Flow diagram of the reference and alternative method	29
ANNEX B:	Kit insert	Error! Bookmark not defined.
ANNEX C:	Raw data per category – screening of samples	Error! Bookmark not defined.
ANNEX D:	Calculation and interpretation of relative trueness	Error! Bookmark not defined.
ANNEX E:	Summary tables accuracy profile study.	Error! Bookmark not defined.
ANNEX F:	Summary data inclusivity and exclusivity study	Error! Bookmark not defined.

1 Introduction

In this project a MicroVal validation study, based on ISO 16140-2:2016, of alternative method(s) for the enumeration of *Listeria monocytogenes* in a broad range of foods and environmental samples was carried out by Campden BRI as the MicroVal Expert Laboratory.

The study involved the enumeration of *L.monocytogenes* and so the requirements of the Quantitative protocol were carried out.

The alternative method being evaluated was:

Nissui Compact Dry *Listeria* (CDLM). This is a chromogenic medium for the enumeration of *Listeria monocytogenes*. Characteristic colonies of *L. monocytogenes* appear red and may or may not be surrounded by blue coloration. *L.monocytogenes* may also appear orange or reddish brown or reddish purple with or without a blue surround.

Reference method was:

ISO 11290-2:2017 Microbiology of the food chain — Horizontal method for the detection and enumeration of *Listeria monocytogenes* and of *Listeria* spp. Part 2: Enumeration method

Scope of the validation study was: A broad range of foods plus environmental samples.

Categories included:

- Meat and poultry products (RTE/RTRH)
- Dairy products (raw and heat processed)
- Fresh produce and fruit
- Seafood & Fishery products
- Multicomponent foods
- Environmental samples

Criteria evaluated during the study were:

- Relative trueness study;
- Accuracy profiles;
- Limits of quantification (LOQ);
- Inclusivity and exclusivity

The final conclusion on the Method Comparison Study and ILS is summarized below::

The alternative method CDLM shows comparable performance to the reference method ISO 11290-2:2017 for the enumeration of *Listeria monocytogenes* in a broad range of foods and environmental samples.

2 Method protocols

The Method Comparison Study was carried out using 10 gram portions of sample material.

According to ISO 16140-2 the reference method and alternative methods were performed with, as far as possible, exactly the same sample and were therefore treated as paired data.

2.1 Reference method

See the flow diagram in Annex A.

Sample preparations used in the reference method and the alternative method were done according to ISO 6887-series for all sample matrices in this proposal.

2.2 Alternative method

See the flow diagram of the alternative method in Annex A.

A copy of Nissui CDLM kit insert is supplied kit insert is displayed in Annex B and a summary of the protocol is outlined below.

The alternative method principle is based on chromogenic detection of *L.monocytogenes* on ready to use rehydratable films.

Typical colonies grow red with or without a blue surround (Figure 1). These are presumptive *L.monocytogenes* and should be taken forward for further confirmation.

Figure 1. Typical colonies on CDLM

In addition, colonies of *L.monocytogenes* may be orange or reddish brown or reddish purple with or without a blue surround. These colonies are also presumptive *L.monocytogenes* and should also be taken forward for further confirmation.

Other organisms may form white or yellow colonies. These are not presumptive *L.monocytogenes* and do not need further confirmation.

Confirmations were carried out by streaking presumptive positive colonies on TSAYE and incubated at 37°C ±1°C aerobically for 24h ±2h. After purification, the colonies were analysed by MALDI ToF with the Maldi Biotyper complete solution (Bruker Daltonik GmbH) with the microflex LT/SH MALDI-MS system.

2.3 Study design

Samples of product containing the target organism were diluted 1 in 10 with an appropriate diluent according to ISO 6887 and homogenised in a stomacher. Appropriate serial dilutions were made and all relevant dilutions were analysed using the reference method and alternative method.

3 Method comparison study

3.1 Relative trueness study

The trueness study is a comparative study between the results obtained by the reference method and the results of the alternative method. This study was conducted using naturally or artificially contaminated samples. Different categories, types and items were tested for this.

A total of 6 categories were included in this validation study. A minimum of 15 items for each category were tested by both the reference method and the alternative method in the relative trueness study, with a minimum of 15 interpretable results per category.

Each category was made up of 3 types, with at least 5 items representative for each type.

3.1.1 Number of samples

The categories, the types and the number of samples analysed are presented in Table 1.

Table 1 – Categories, types and number of samples analysed

Categories	Types	Items (examples)	Minimum Samples	Preparation
1) Meat and poultry products (RTE/RTRH)	Cooked meat and poultry	Cooked hams, pate, cooked poultry,	5	ISO 6887-1 &2
	Fermented or dried products	Salami, chicken sausage	5	
	Raw cured products	Dry cured hams, smoked turkey products	5	
2) Dairy products (pasteurised and raw)	Pasteurised dairy products	Milk based desserts Ice cream, Drinks, Dry milk	5	ISO 6887-1 & 5
	Pasteruised milk based products	Yogurts, Milk, Cream, hard cheese, soft cheese	5	
	Raw milk products	Raw milk and cream, Raw milk yogurt, raw milk cheese	5	
	Ready to eat fruit	Fruit mix Fruit drinks	5	

Categories	Types	Items (examples)	Minimum Samples	Preparation
3) Fresh produce and fruits	Cut ready to eat vegetables/sprouts	Bagged pre-cut salads Vegetable juices Bean sprouts	5	ISO 6887-1 & 4
	Leafy greens	Basil, Lettuce, Parsley	5	
4) Seafood & Fishery products	Unprocessed	Raw chilled or frozen fish	5	ISO 6887-1 & 3
	RTE	Smoked fish, pates, terrines, crustaceans	5	
	(Processed RTC)	fish/seafood meals/mixes)	5	
5) Multicomponent foods	Composite foods with substantial raw ingredients	Refrigerated pasta salads, sandwiches	5	ISO 6887-1
	Composite processed foods	Ready meals	5	
	Mayonnaise based deli salads	Sandwich spread, raw vegetables with dressing	5	
6) Environmental samples	Surface samples	Equipment, floors, walls	5	ISO 6887-1 ISO 18593:2008
	Process water	Wash water, cooling water	5	
	Dust wipes and residues	Food manufacturing environments	5	
Total			90	

105 samples were analysed, leading to 105 exploitable results.

3.1.2 Test sample preparation

No naturally contaminated samples were found in pre-screening studies (ANNEX C). It was therefore necessary to use artificial contamination procedures. Artificial procedures used a range of seeding protocols and strains in order to examine a wide range of different conditions.

Samples were inoculated with *L. monocytogenes* strains before storage of the inoculated samples, e.g. frozen foods were stored for at least 2 weeks at -20 °C, perishable foods were stored for at least 48 h at 2 – 8 °C, and shelf stable foods were stored for at least 2 weeks at room temperature.

In addition, 5 samples of Pasteurised milk products, 5 samples of Pasteurised dairy products and 5 samples of Cooked meat and poultry were spiked with heat treated strains of *L.monocytogenes* (10min @55°C) The injury level achieved was between 1.2 and 1.5logs (see raw data file for details).

Eighteen *L. monocytogenes* isolates were used for artificial inoculations. These cultures preferably originated from comparable sample types as the ones to be inoculated. Each particular strain was used to contaminate up to 5 different items.

Inoculation of samples was at the range usually associated with the test organisms and within the capabilities of the test methods, covering the range 10^2 cfu/g to 10^7 cfu/g

In accordance with ISO 16140-2, a minimum of 15 items for each category were tested by both the reference method and the alternative method in the relative trueness study, made up of at least three types with at least 5 interpretable results per type.

All results were tabulated, calculated and interpreted according to ISO 16140-2.

3.1.3 Protocols applied during the validation study.

Incubation time

The incubation time for the alternative method was 24 ± 2 h (22h was used) plus an additional 24 ± 2 h at 37°C if colonies were not distinct. A total incubation period of 44h (22h + 22h) was used for this validation as not all colonies were distinct after the first 22h.

Confirmations for the alternative method

Confirmations were carried out by streaking presumptive positive colonies purified on TSAYE and incubated at $37^\circ\text{C} \pm 1^\circ\text{C}$ aerobically for $24h \pm 2h$. After purification, the colonies were analysed by MALDI ToF with the Maldi Biotyper complete solution (Bruker Daltonik GmbH) with the microflex LT/SH MALDI-MS system.

3.1.4 Test results

All raw data per category are given in Excel file 2020LR91 Quantitative data file: tab Relative Trueness.

The samples were analysed by the reference and the alternative methods in order to have 15 interpretable results per incubation protocol, and 5 interpretable results per tested type.

3.1.5 Calculation and interpretation of relative trueness study

The calculations are provided in Annex D.

The obtained data were analyzed using the scatter plot. The graphs are provided with the line of identity ($y = x$).

Figures 2-7 shows the scatter plots for *L. monocytogenes* in the 6 individual categories

Figure 8 shows the scatter plot for all the categories for *L. monocytogenes* plated onto CDLM

Figure 2 - Scatter plot of the reference method versus alternative method results for *L. monocytogenes* in Meat and poultry products

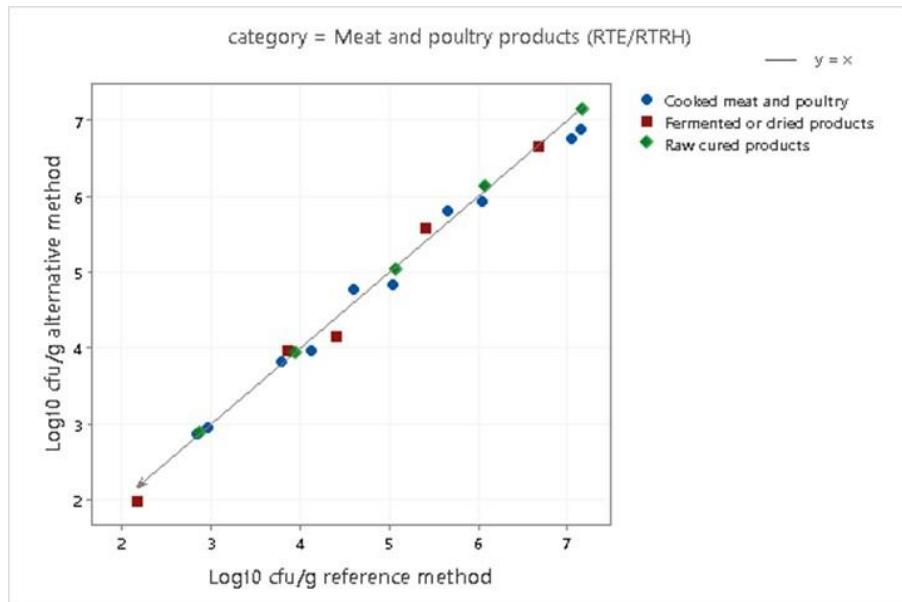


Figure 3- Scatter plot of the reference method versus alternative method results for *L. monocytogenes* in Dairy products

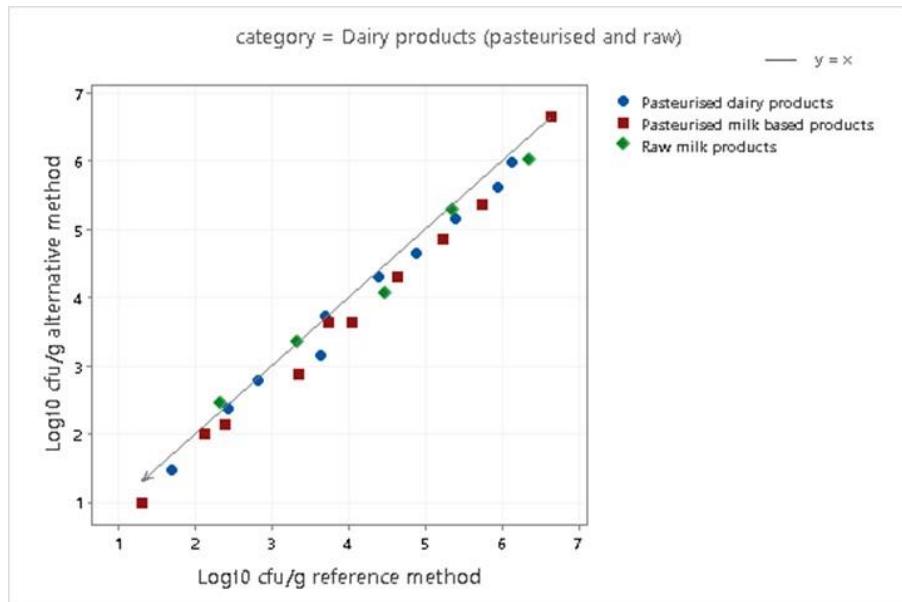


Figure 4- Scatter plot of the reference method versus alternative method results for *L. monocytogenes* in Fresh produce and fruit

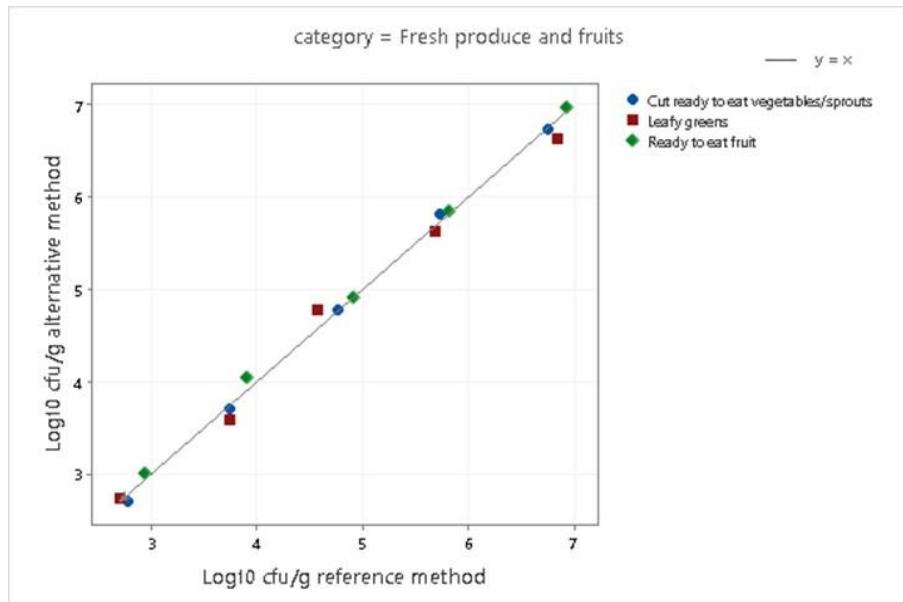


Figure 5- Scatter plot of the reference method versus alternative method results for *L. monocytogenes* in Seafood and fishery products

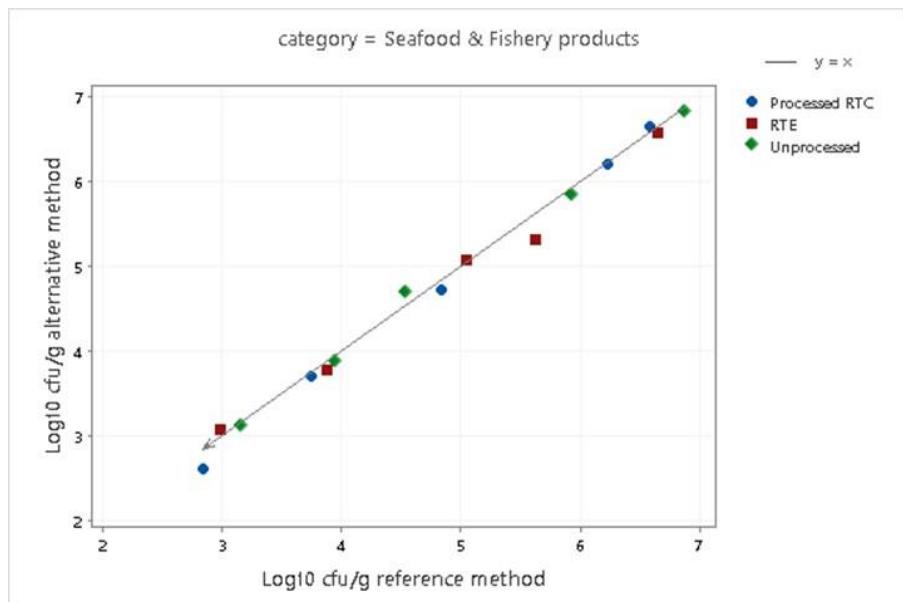


Figure 6- Scatter plot of the reference method versus alternative method results for *L. monocytogenes* in Multicomponents foods

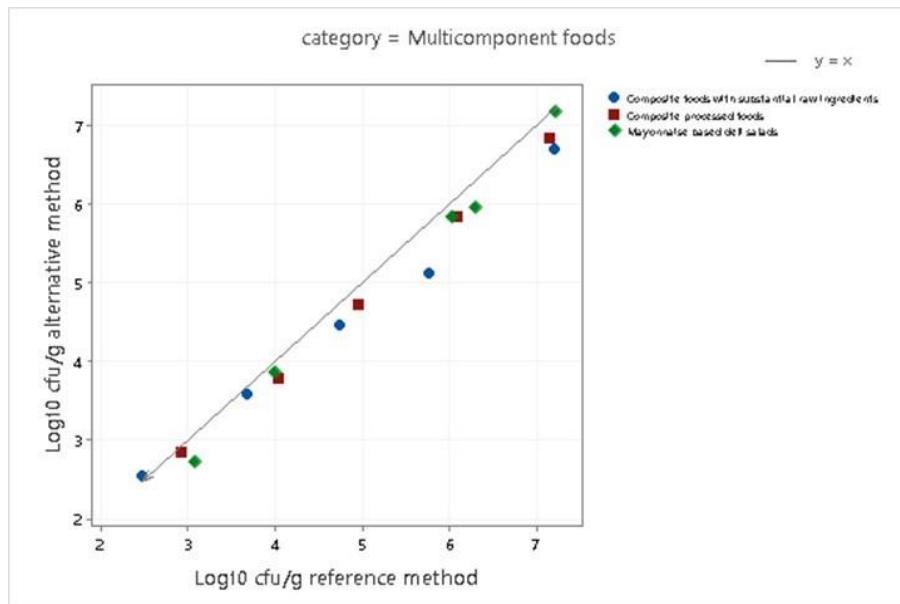


Figure 7- Scatter plot of the reference method versus alternative method results for *L. monocytogenes* in Environmental samples

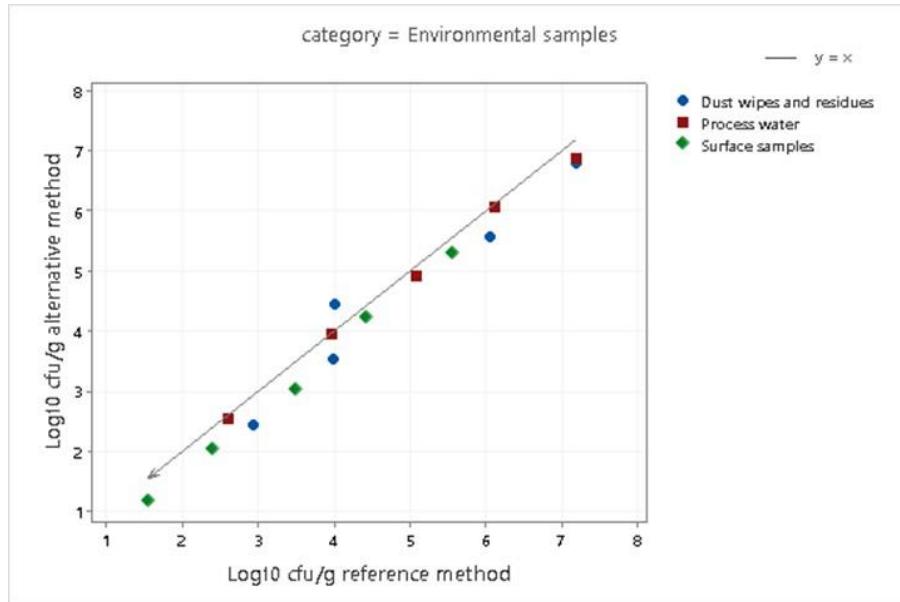
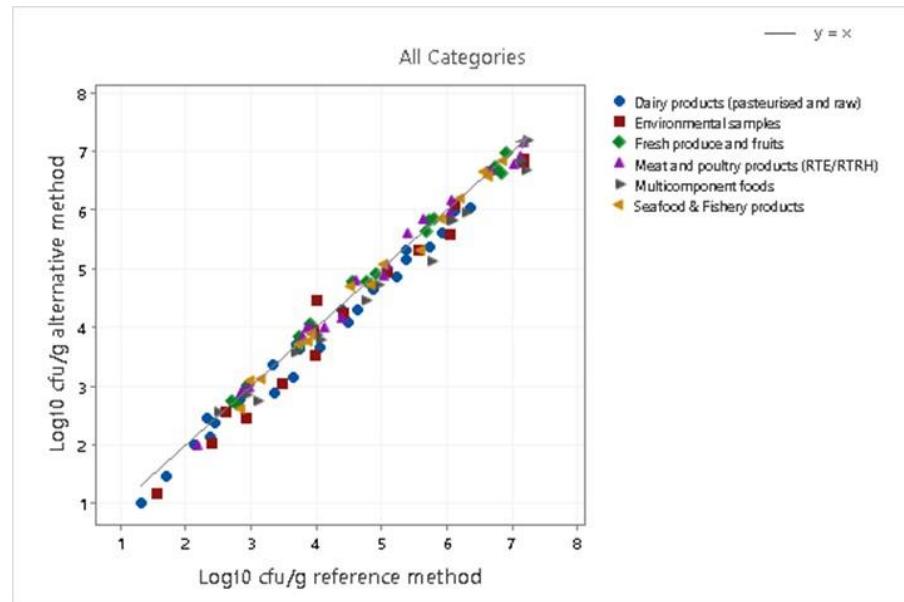
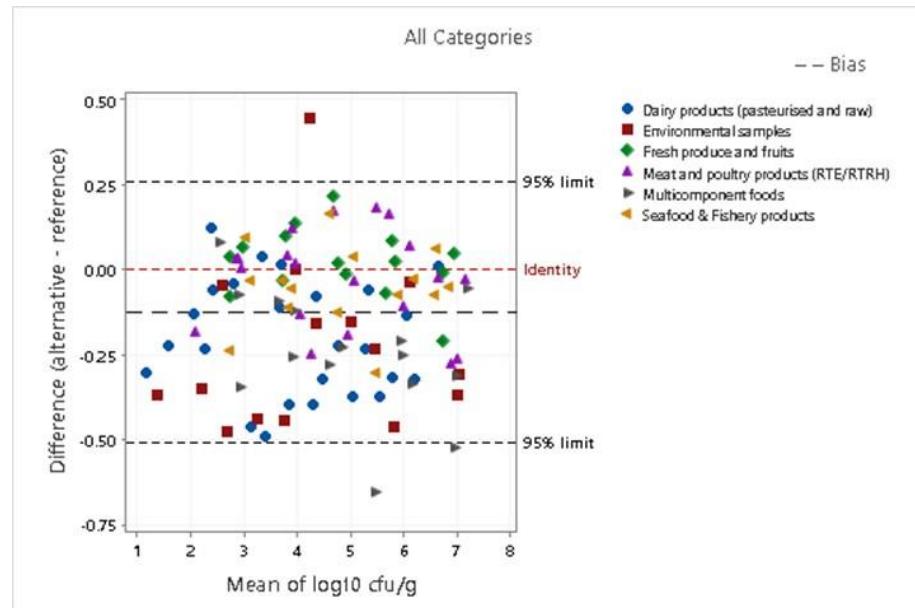



Figure 8 - Scatter plot of the reference method versus alternative method results for all the categories for *L. monocytogenes*

According to ISO16140-2:2016 6.1.2.3, the results of the scatter plot are interpreted on the visual observation of the amount of bias and extreme results. The scatter plots for show good agreement between the reference method and alternative method.

There are no obvious disagreements between the two methods and no real bias was observed. This is further described in the Bland Altman plot analysis in Figure 9.

A summary of the calculated values per category is provided in Table 2


Table 2 - Summary of the calculated values per category plates.

Category.	n	\bar{D}	sD	95% Lower limit	95% Upper limit
Dairy products (pasteurised and raw)	25	-0.203	0.170	-0.561	0.154
Environmental samples	15	-0.226	0.247	-0.773	0.321
Fresh produce and fruits	15	0.022	0.101	-0.201	0.246
Meat and poultry products (RTE/RTRH)	20	-0.036	0.145	-0.347	0.276
Multicomponent foods	15	-0.244	0.186	-0.656	0.167
Seafood & Fishery products	15	-0.050	0.119	-0.314	0.214
All Categories	105	-0.126	0.193	-0.510	0.258

\bar{D} : Average difference SD: standard deviation of differences n: number of samples

The Bland-Altman difference plot for all the samples is given Figure 9.

Figure 9 – Bland-Altman difference plot for all the samples

Samples for which the difference between the result observed with the reference and the alternative methods is above or lower than the limits are listed in the Table 3.

Table 3 - Data which are outside of the accepted limits

Category	Type	Item	N° Sample	Reference method Log cfu/g	Alternative method Log cfu/g	Mean Log cfu/g	Diff Alt – ref	Lower / Upper limits
Mulitcomponent food	Substantial raw ingredients	Cheese coleslaw	M9	5.77	5.11	5.44	-0.66	-0.505
Mulitcomponent food	Substantial raw ingredients	Egg and bacon salad	M10	7.20	6.68	6.94	-0.52	-0.505
Environmental samples	Dusts and residues	Conveyor belt	E14	4.00	4.45	4.22	0.45	0.276

Comments

The Bland Altman showed good agreement between the Reference method and the Alternative method. There were 3 data points from a total of 90 data points which were outside of the accepted limits representing two different categories.

There was a slight negative bias for the alternate method with an overall bias from all the categories of -0.115 which means that overall the alternate method gave good agreement with the reference method. For 3 of the categories there was a negative bias of -0.203 to -0.244. The categories affected were Dairy, Environmental and Multicomponent. A root cause analysis was carried out to determine possible

reasons for the negative bias seen in the alternative method, although no explanation for this negative deviation was identified.

3.1.6 Conclusion (RT study)

The relative trueness of the Alternative method is satisfied as there was a good agreement between the reference method and alternative method in the scatterplots and Bland Altman analyses.

3.2 Accuracy profile study

The accuracy profile study is a comparative study between the results obtained by the reference and the results of the alternative method. This study is conducted using artificially contaminated samples, using one type per category.

3.2.1 Categories, sample types and strains

Five food categories were tested with a single batch of two different food types using 6 samples per type.

Two samples were contaminated at a low level, 2 at intermediate level, 2 at a high level. For each sample, 5 replicates (5 different test portions) were tested. A total of 30 samples were analysed per food type. The following food type/strain pairs were studied (See Table 4)

Each sample was bulk inoculated and five replicate test portions examined from the bulk sample/ individually inoculated as a separate test portion, with the exception of salad where single test portions were inoculated.

Table 4- Categories, types, items, strains and inoculation levels for accuracy profile study

Category	Types	Strain of <i>L. monocytogenes</i>	Target Level
Meat and poultry products (RTE/RTRH)	Cooked sliced chicken (batch 1 and 2)	<i>L. monocytogenes</i> 3b (CRA 1168 from cooked turkey)	100-250 cfu /g
			1000- 5,000 cfu/g
			10,000- 60,000 cfu/g
Dairy products (pasteurised and raw)	Raw milk (batch 1 and 2)	<i>L. monocytogenes</i> 4b (CRA 1177 from ice-cream)	100-250 cfu /g
			1000- 5000 cfu/g
			10,000- 60,000 cfu/g
Fresh produce and fruits	Bagged salads (batch 1 and 2)	<i>L. monocytogenes</i> 1/2a (CRA 1102 from lettuce)	500-1,000 cfu /g
			5,000- 10,000 cfu/g
			10,000- 50,000 cfu/g
Seafood & Fishery products	RTC frozen fishcakes (batch 1 and 2)	<i>L. monocytogenes</i> (CRA 5219) from salmon fish cakes	100-250 cfu /g
			1000- 10,000 cfu/g
			100,000- 1,000,000 cfu/g
Multicomponent foods	Pasta salad (batch 1 and 2)	<i>L. monocytogenes</i> 3c (CRA 1173 from chicken and lettuce sandwich)	100-250 cfu /g
			1000- 5000 cfu/g
			10,000- 50,000 cfu/g
Environmental samples	Process water (batch 1 and 2)	<i>L. monocytogenes</i> 4a (CRA 1191 industrial isolate)	100-250 cfu /g
			500- 1,000 cfu/g
			50,000- 50,000 cfu/g

Preparation of samples were done as a bulk inoculation. A 100g sample was inoculated with 1ml of appropriate dilution of inoculating strain and homogenised by hand massaging or stomaching to evenly distribute the inoculum. For all matrices, the 100g samples was inoculated and stored at 2-8°C for 48-72h prior to analysis, or at -20°C for 2 weeks for frozen foods.

Five separate 10g test portions were removed from the bulk sample and mixed with appropriate diluent (BPW ISO formulation) and enumerated on both methods.

All results were tabulated, calculated and interpreted according to ISO 16140-2.

3.2.2 Calculations and interpretation of accuracy profile study

The calculations were done using the AP Calculation Tool MCS (Clause 6-1-3-3 calculation and interpretation of accuracy profile study) available on

<http://standards.iso.org/iso/16140>

The summary tables for the accuracy profile study are given in Annex E and the statistical results and the accuracy profiles are provided Figures 10-15. Raw data is provided in Excel file 2020LR91 Quantitative data file: tab Accuracy profile.

Figure 10 – Accuracy profile for reference method versus alternative method results for *L. monocytogenes* in Meat and poultry products

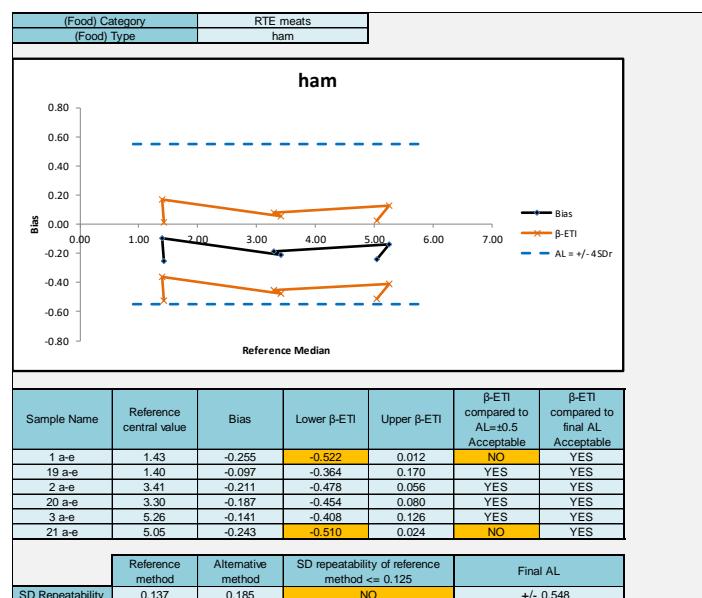


Figure 11– Accuracy profile for reference method versus alternative method results for *L. monocytogenes* in Dairy products

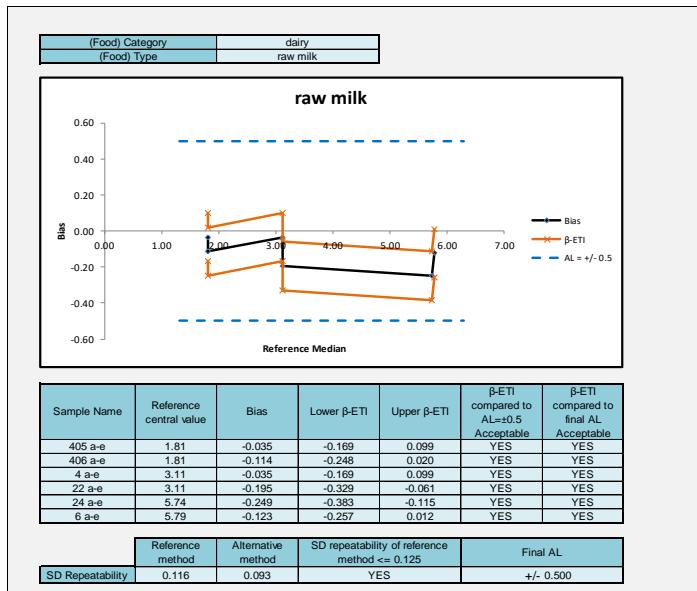


Figure 12– Accuracy profile for reference method versus alternative method results for *L. monocytogenes* in Fresh produce and fruits

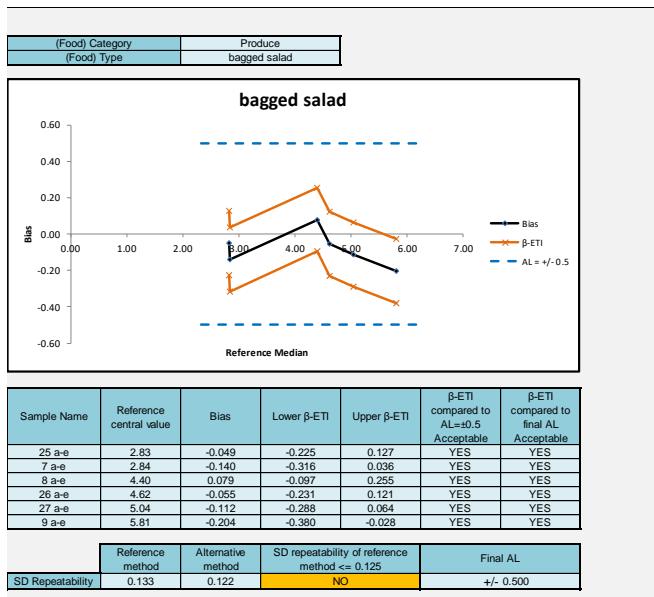


Figure 13 – Accuracy profile for reference method versus alternative method results for *L. monocytogenes* in Seafood and Fishery products

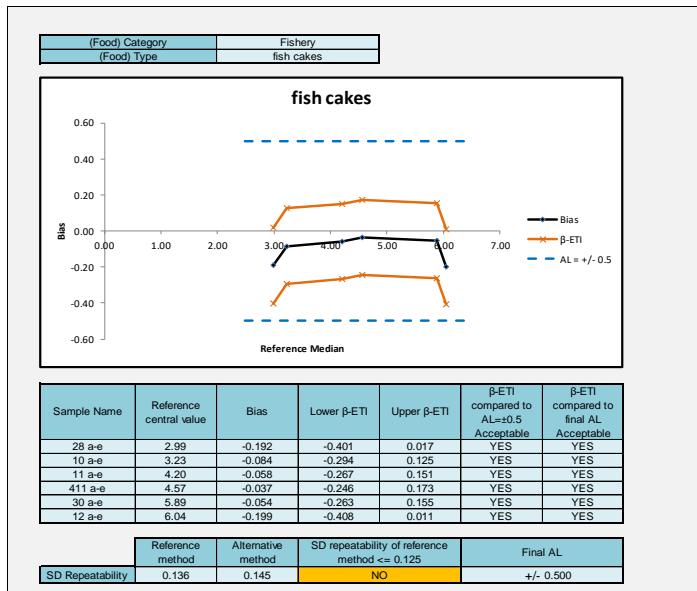


Figure 14 – Accuracy profile for reference method versus alternative method results for *L. monocytogenes* in Multicomponent Foods

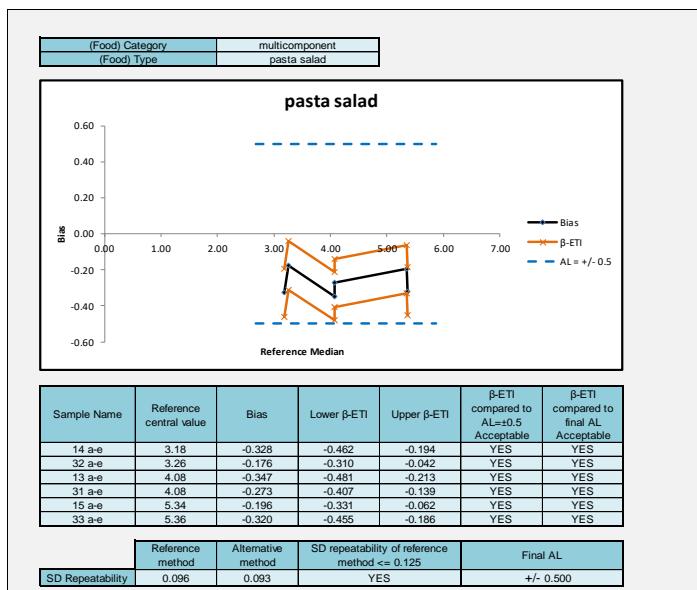
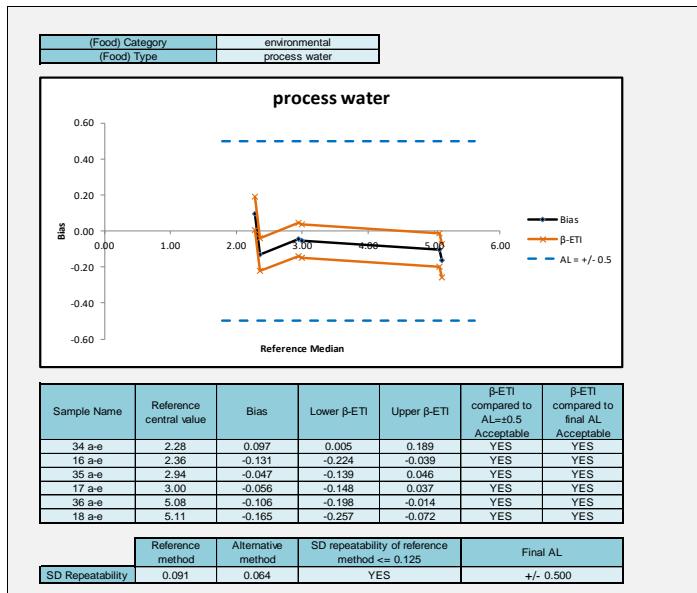



Figure 15 – Accuracy profile for reference method versus alternative method results for *L. monocytogenes* in Environmental samples

Five of the six categories met the AL of 0.5log (dairy, fresh produce, fish and seafood, multicomponent foods, environmental samples. 1 category (meat and poultry required the new AL to be calculated. All data met the new AL value of 0.548.

The multicomponent foods (pasta salad) showed a slight negative bias for the alternate method although all samples met the 0.50 log AL. Other categories did not show any systematic bias between methods

Conclusion accuracy profile study

The accuracy of the Alternative method (CDLM) is satisfied as all categories met the 0.5log AL or the re-calculated AL .

3.3 Inclusivity / exclusivity

Inclusivity is the ability of the alternative method to detect the target analyte from a wide range of strains. Exclusivity is the lack of interference from a relevant range of non-target strains of the alternative method.

3.3.1 Protocols

Inclusivity:

Fifty seven strains of *L. monocytogenes* were analysed. The analysis was carried out once with the Alternative method, the Reference method and a non selective method. All inclusivity strains were grown overnight in BHI and enumerated on the

reference method and alternative method at a level 10- 100 times greater than the minimum level of detection following protocols described in Annex A.

Exclusivity:

Fifty seven strains of non-target organisms was analysed. This consisted of 24 strains of non-*Listeria* species and 33 strains of non-*monocytogenes* *Listeria* species.

Each test was performed once with the Alternative method, the Reference method and a non selective agar.

3.3.2 Results inclusivity and exclusivity study

Summary data on inclusivity and exclusivity are given in Annex F. Raw data is given in Excel file 2020LR91 Quantitative data file: tabs Inclusivity and Exclusivity.

Inclusivity

For the inclusivity study , all 57 strains of *L.monocytogenes* gave typical colonies on the alternate and reference method and all colonies were confirmed by MALDI-Tof.

The level enumerated on the reference method and alternative method were similar with no negative or positive bias shown.

Exclusivity

For the exclusivity strains, there were 2 of the 24 non non-*Listeria* species which gave typical colonies on CDLM but not the ISO reference method. These were *Bacillus cereus* CRA 16662 isolated from dried potato and *Bacillus thuringiensis* CRA 16616 isolated from broccoli. The final confirmation result confirmed the identity of the strain as the target *Bacillus* species and therefore showed the correct results as negative for *L.monocytogenes*.

For the 33 non-*monocytogenes* *Listeria* strains, several gave typical colonies on both CDLM and the reference method agars. These were as follows:

- 9 *L.ivanovii* strains; CRA 1120 from radish, CRA 1122 from salami, CRA1123 from soft cheese, DSM 12491 (*L.ivanovii* subsp. *londoniensis*) from food and 4 strains from industrial food environment (CRA 1835, CRA 3925, CRA 5931, CRA 6085)

All colonies were correctly identified by the Bruker Biotype MALDI-Tof and therefore gave the correct result. This shows the importance of using confirmation procedures for identification of *L.monocytogenes* from other *Listeria* species which have similar morphological characteristics on selective agar plates.

3.3.3 Conclusion

All 57 *Listeria* strains were correctly identified following the alternative method.

All 57 non target strains were correctly identified as non-*L.monocytogenes* following the alternative method detection and confirmation procedures.

The alternative method gave comparable performance to the reference method and is therefore selective and specific to *Listeria monocytogenes*.

3.4 Limit of Quantification

The LOQ applies only to instrumental methods. It does not apply to methods based on counting visible colonies. It may also not apply to instrumental methods where it is not possible to get blank samples e.g. instrumental methods for total plate counts.

The alternate method is based on visible colonies.

The LOQ does not have to be calculated for the alternative method in this study.

3.5 Conclusion (MCS)

Overall, the conclusions for the Method Comparison are:

- The alternative method CDLM enumeration method for *L. monocytogenes* shows satisfactory results for relative trueness.
- The alternative method CDLM enumeration for *L. monocytogenes* shows satisfactory results for accuracy profile.
- The alternative method CDLM enumeration is selective and specific to *Listeria monocytogenes*.

4 Interlaboratory study

The inter-laboratory study is a study performed by multiple laboratories testing identical samples at the same time, the results of which are used to estimate alternative-method performance parameters.

4.1 Study organization

Collaborators

Samples were sent to 11 laboratories. (See Annex G for details).

Matrix and strain used

Cooked sliced chicken was inoculated with *Listeria monocytogenes* CRA 1168 (isolated from cooked turkey)

Sample preparation

Samples were prepared and inoculated on 8 November 2021 as described below:

For each collaborator, a set of samples was prepared containing 2 samples at a low level, two samples at a medium level, two samples at a high level and a single uninoculated blank sample. The samples were blind-coded so that the collaborators

did not know the intended contamination level. A set of samples was also prepared for the EL although the data from these was not used in the data analysis.

The target levels and codes are shown below

Table 13 : Contamination levels

Contamination level	Sample code
Uninoculated	4
Low (10^2 cfu/g)	1
Low (10^2 cfu/g)	5
Medium (10^4 cfu/g)	2
Medium (10^4 cfu/g)	6
High (10^6 cfu/g)	3
High (10^6 cfu/g)	7

Labelling and shipping

Blind coded samples were placed in isothermal boxes, which contained cooling blocks, and express-shipped to the different laboratories.

A temperature control flask containing a sensor was added to the package in order to register the temperature profile during the transport, the package delivery and storage until analyses.

Samples were shipped in a frozen condition on 9 November 2021 and were received within 24 h to 72 h to the involved laboratories. The temperature conditions had to stay lower or equal to 8°C during transport, and between 0°C – 8°C in the labs. On receipt at the laboratories, the samples were stored frozen at $\leq -18^{\circ}\text{C}$ and defrosted prior to analysis as recommended in ISO 6887-1. The analyses was started on Monday 15 November 2021. Stability studies had been conducted to show that the required level of target organisms would be present after 7 and 8 days frozen storage. The expert lab analysed a set of samples on Monday 15 November 2021.

Analysis of Samples

Collaborative study laboratories and the expert laboratory carried out the analyses on Monday 15 November 2021. The analyses by the reference method and the alternative method were performed on the same day.

Experimental parameters controls

Detection of Listeria monocytogenes in the matrix before inoculation

In order to ensure absence of *L. monocytogenes* in the matrix, the reference method was performed on five portions (10 g) before the inoculation. All the results were negative.

Strain stability during transport

Duplicate samples inoculated at low, medium and high levels were tested for enumeration of *L. monocytogenes* after 7 and 8 days storage at -18°C. Samples were thawed under controlled conditions prior to analysis. The data shows good stability under the storage regime tested (Table 14).

Table 14 - *L.monocytogenes* stability in the matrix

Day	Reference method cfu/g						Alternative method cfu/g					
	Low level		Medium level		High level		Low level		Medium level		High level	
	a	b	a	b	a	b	a	b	a	b	a	b
Day 0	1.1x10 ³	1.5x10 ³	1.2x10 ⁵	1.2x10 ⁵	8x10 ⁵	8x10 ⁵	964	855	5.8x10 ⁴	6.7x10 ⁴	3.1x10 ⁵	6x10 ⁴
Day 7	1.5x10 ³	1.1x10 ³	1.0x10 ⁵	9.5x10 ⁴	7x10 ⁵	7.3x10 ⁵	1.2x10 ³	1.2x10 ³	1x10 ⁵	7.5x10 ⁴	6x10 ⁵	7.1x10 ⁴
Day 8	1.3x10 ³	1.7x10 ³	1.3x10 ⁵	1.1x10 ⁵	9.8x10 ⁵	8.6x10 ⁵	1.3x10 ³	1.2x10 ³	1x10 ⁵	1.1x10 ⁵	8.4x10 ⁵	6x10 ⁵

Logistic conditions

The temperatures measured at receipt by the collaborators, the temperatures registered by the thermo-probe, and the receipt dates are given in Table 15.

Table 15 - Sample temperatures at receipt

Collaborator	Temperature measured by probe (°C)	Temperature measured at receipt (°C)	Receipt date and time	State of the package and samples at receipt	Analysis date
1	4.7	N/A	12/11/2021 13:45	1x box damaged	15/10/2021
2	5.5	5.3	10/11/2021 12:00	Good	15/10/2021
3	2.7	N/A	11/11/2021 09:30	Satisfactory	15/10/2021
4	Data not received		11/11/2021 15:00	Data not received	15/10/2021
5	Data not received				
6	4.5	7.5	10/11/2021	OK	15/10/2021
7	5.9	6.6	10/11/2021 14:00	Good	15/10/2021
8	Data not received	7.0	11/11/2021	Data not received	15/10/2021
9	Data not received				
10	N/A	Water blank frozen	10/11/2021 10:00	Good	15/10/2021
11	N/A	Water blank frozen	10/11/2021 10:00	Good	15/10/2021

No problem was encountered during the transport or at receipt for 9 out of 11 collaborators. All the samples were delivered on time and in appropriate conditions to 11 laboratories. Temperatures during shipment and at receipt were all correct. Data for the study was not received from 2 participants (labs 5 and 9) and therefore these were excluded from the study.

The temperature curves are given in Annex I.

Calculation and summary of data

The raw data are given in Annex H.

MicroVal Expert laboratory results

The results obtained by the expert laboratory are given in Table 16.

Table 16 – Results obtained by the expert lab.

Level	Reference method cfu per g	Alternative method cfu per g
Blank	<10	<10
Low	1.20E+03	1.00E+03
Low	1.50E+03	945
Medium	9.30E+03	9.00E+03
Medium	8.50E+03	8.10E+03
High	8.40E+04	6.30E+04
High	7.10E+04	4.50E+04

Results obtained by the collaborative laboratories.

The data from the collaborative trial were calculated and interpreted according to section 6.2.3 of ISO 16140-2:2016 using the freely available Excel® spreadsheet (<http://standards.iso.org/iso/16140>). Version 14-03-2016 was used for these calculations.

The results obtained by the collaborators are shown in Table 17.

The accuracy profile plot is shown in Figure 49 and the statistical analysis of the data shown in Table 18.

Table 17: Summary of the results of the interlaboratory study per analyte level

Collaborator	Level	Reference method (Log cfu/g)		Alternative method (Log cfu/g)	
		Duplicate 1	Duplicate 2	Duplicate 1	Duplicate 2
1	low	3.49	3.93	3.49	2.93
2	low	3.04	3.04	2.67	3.08
3	low	3.95	4.66	3.46	4.72
4	low	2.66	2.76	2.57	2.81
5	low	Data not received			
6	low	3.48	2.62	2.88	2.81
7	low	2.95	3.15	2.76	3.08
8	low	2.90	2.92	2.86	2.77
9	low	Data not received			
10	low	2.87	3.04	2.90	3.00
11	low	3.04	3.18	3.04	3.15
1	medium	4.57	4.49	4.38	4.34
2	medium	3.94	3.99	3.40	3.70
3	medium	5.11	4.99	4.77	4.98

4	medium	3.72	3.71	3.77	3.96
5	medium	Data not received			
6	medium	4.08	4.04	4.00	3.92
7	medium	3.86	3.70	3.76	3.94
8	medium	3.98	3.89	3.82	3.86
9	medium	Data not received			
10	medium	3.78	4.04	3.83	3.82
11	medium	3.98	4.08	3.83	3.91
1	high	5.53	5.59	5.41	5.40
2	high	4.86	4.66	4.88	4.72
3	high	5.89	5.89	6.08	5.97
4	high	4.46	4.85	4.71	4.72
5	high	Data not received			
6	high	5.94	4.79	5.65	4.65
7	high	5.11	4.94	4.95	4.94
8	high	3.88	3.81	4.82	4.64
9	high	Data not received			
10	high	5.11	4.61	4.95	4.72
11	high	5.18	4.77	4.97	4.73
1	blank	<1		<1	
2	blank	<1		<1	
3	blank	<1		<1	
4	blank	<1		<1	
5	blank	<1		<1	
6	blank	<1		<1	
7	blank	<1		<1	
8	blank	<1		<1	
9	blank	<1		<1	
10	blank	<1		<1	
11	blank	<1		<1	

Figure 49. Accuracy profile of Nissui Compact Dry LM from the ILS

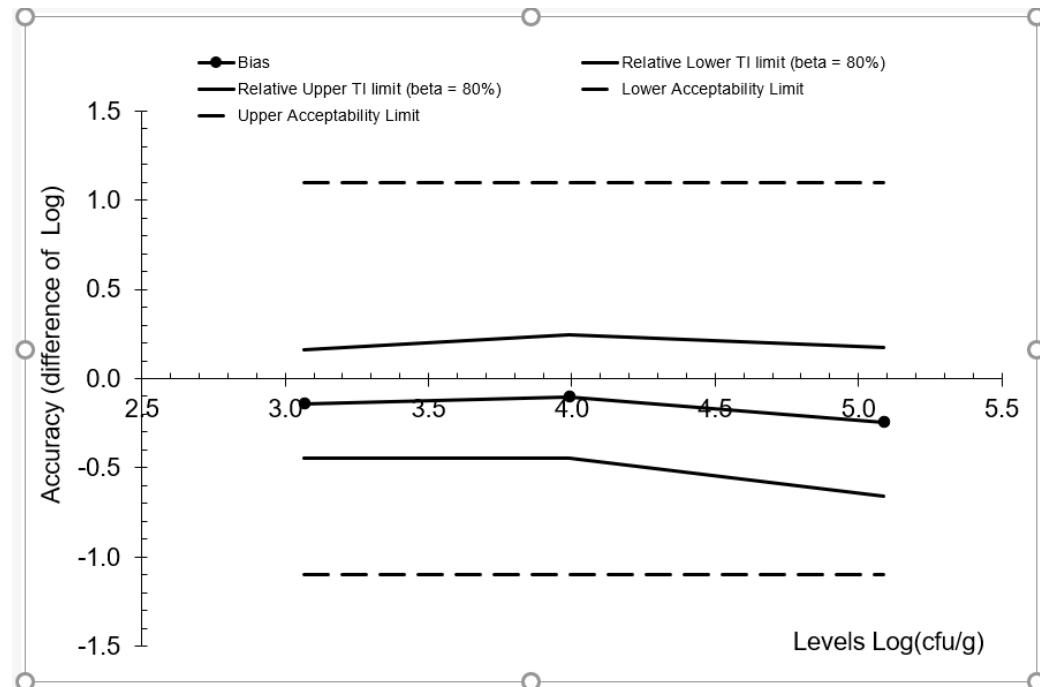
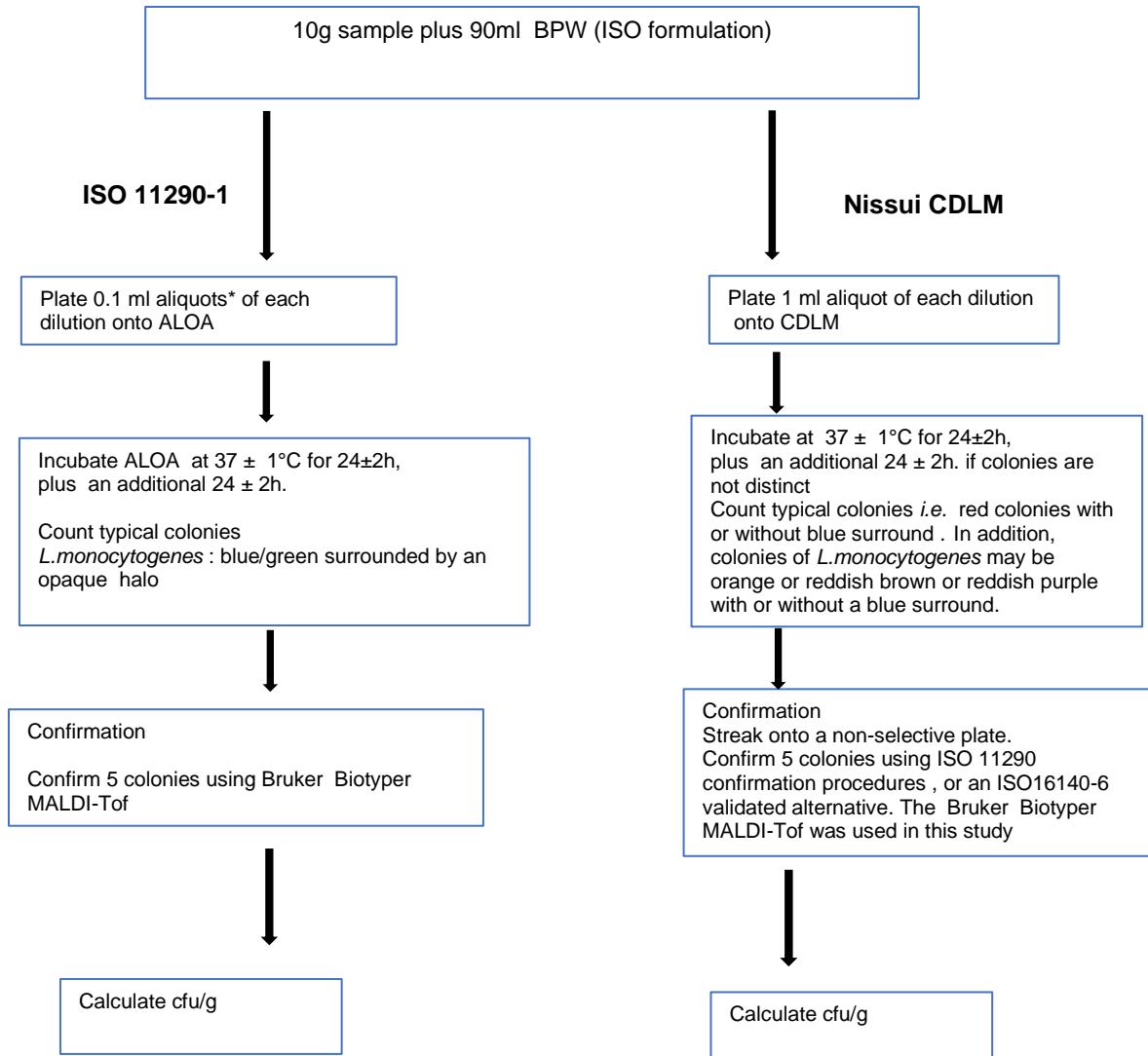


Table 18. Statistical analysis of the ILS data according to the ISO spreadsheet

Levels	Alternative method			Reference method		
	Low	Medium	High	Low	Medium	High
Target value	3.066	3.990	5.090			
Number of participants (K)	8	8	8	8	8	8
Average for alternative method	2.925	3.890	4.847	3.066	3.990	5.090
Repeatability standard deviation (sr)	0.206	0.105	0.087	0.252	0.087	0.126
Between-labs standard deviation (sL)	0.073	0.212	0.267	0.227	0.239	0.371
Reproducibility standard deviation (sR)	0.218	0.237	0.281	0.339	0.255	0.392
Corrected number of dof	14.541	8.529	7.700	11.842	7.876	7.771
Coverage factor	1.388	1.466	1.483			
Interpolated Student t	1.343	1.390	1.402			
Tolerance interval standard deviation	0.2257	0.2495	0.2975			
Lower TI limit	2.622	3.543	4.430			
Upper TI limit	3.228	4.237	5.264			
Bias	-0.141	-0.100	-0.242			
Relative Lower TI limit (beta = 80%)	-0.444	-0.447	-0.659			
Relative Upper TI limit (beta = 80%)	0.162	0.246	0.175			
Lower Acceptability Limit	-1.10	-1.10	-1.10			
Upper Acceptability Limit	1.10	1.10	1.10			
New acceptability limits may be based on reference method pooled variance						
Pooled repro standard dev of reference	0.333					

TRUE
FALSE

Select ALL blue lines to draw the accuracy profile as illustrated in the worksheet "Graph Profile"


5 Overall conclusions of the MCS/ILS study

- The alternative method CDLM for enumeration of *Listeria monocytogenes* shows satisfactory results for relative trueness.
- The alternative method CDLM for enumeration of *Listeria monocytogenes* shows satisfactory results for accuracy profile.
- The alternative method CDLM for enumeration of *Listeria monocytogenes* is selective and specific.
- The alternative method CDLM for enumeration of *Listeria monocytogenes* shows satisfactory performance in the ILS.
- The alternative method CDLM for enumeration of *Listeria monocytogenes* shows comparable performance to the reference method Microbiology of the food chain — Horizontal method for the detection and enumeration of *Listeria monocytogenes* and of *Listeria spp.* Part 2: Enumeration method (ISO 11290-2:2017)

Date 25/01/2022

Signature Suzanne Jordan

ANNEX A: Flow diagram of the reference method ISO 11290-2:201

